User talk:Feilsky

From Openmoko

(Difference between revisions)
Jump to: navigation, search
(考察阀门的几项主要技术性能)
(轴承结构对振动与噪声的影响)
Line 29: Line 29:
 
使用寿命  
 
使用寿命  
 
它表示阀门的耐用程度,[http://www.jiadev.com/f.asp?ie=29 不锈钢管件]是阀门的重要性能指标,并具有很大的经济意义。通常以能保证密封要求的启闭次数来表示,也可以用使用时间来表示。
 
它表示阀门的耐用程度,[http://www.jiadev.com/f.asp?ie=29 不锈钢管件]是阀门的重要性能指标,并具有很大的经济意义。通常以能保证密封要求的启闭次数来表示,也可以用使用时间来表示。
 +
 +
== 轴承结构对振动与噪声的影响 ==
 +
 +
1.滚道声
 +
滚道声是由于[http://www.topbearing.cn 轴承]旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低[http://www.topbearing.cn/dl/ 进口轴承],即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。
 +
滚道声产生源在于受到载荷后的套圈固有振动所致[http://www.topbearing.cn/dl/timken.html TIMKEN轴承]。由于套圈和滚动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使[http://www.topbearing.cn/dl/koyo.html KOYO轴承]是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承[http://www.topbearing.cn/dl/nsk.html NSK轴承]及精确使用轴承使之降噪减振。
 +
2.落体滚动声
 +
该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区[http://www.topbearing.cn/dl/ina.html INA轴承]的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:a.脂润滑时易产生,油润滑时不易产生[http://www.topbearing.cn/dl/fag.html FAG轴承]。当用劣质润滑脂时更易产生。b.冬季常常发生。c.对于只作用径向载荷且径向游隙较大时也易产生。d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。e.可能是连续声亦可能是断续声。f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。通过采用预[http://www.topbearing.cn/dl/skf.html SKF轴承]载荷方法可有效降低该噪声,减少装机后轴承工作径向游隙,选用良好润滑剂亦能有所改善,有些国外企业采用轻型滚动体,如陶瓷滚子或空心滚子等技术措施来防止这种噪声的产生。
 +
3.尖鸣声
 +
它是金属间滑动摩擦产生相当剧烈的尖叫声,尽管此时轴承温升不高,对轴承寿命和润滑脂寿命也无多大影响,也不影响旋转,但不悦耳声令人不安,尤其是承受径向载荷的大型短圆柱滚子轴承常有此噪声,其特点为:a.轴承径向游隙大时易产生。b.通常出现在脂润滑中,油润滑则较罕见。c.随着轴承尺寸增大而减小,且常在某转速范围内出现。d.冬季时常出现。e.它的出现是无规则的,和不可预知的,并且与填脂量及性能、安装运转条件有关。这种噪声可采用减少轴承径向游隙和采用浅度外圈滚道结构来防止。
 +
4.保持架声
 +
在轴承旋转过程中保持架的自由振动以及它与滚动体或套圈相撞击就会发出此噪声。它在各类轴承中都可能出现,但其声压级不太高而且是低频率的。其特点是:a.冲压保持架及塑料保持架均可产生。b.不论是稀油还是脂润滑均会出现。c.当外圈承受弯矩时最易发生。d.径向游隙大时容易出现。
 +
由于保持架兜孔间隙及保持架与套圈间隙在轴承成品中不可避免的要存在,因此彻底消除保持架声十分困难,但可通过减少装配误差,优选合理的间隙和保持架窜动量来改善。
 +
另一种保持架特殊声是由于保持架与其他轴承零件引导面间的摩擦引发保持架的自激振动而发生的喧嚣声。深沟球轴承的冲压保持架较薄,在径向和轴向平面内的弯曲刚度较低,整体稳定性差,轴承高速旋转时就会因弯曲变形而产生自激振动,引起“蜂鸣声”。
 +
当轴承在径向载荷作用下且油脂性能差的情况下,运转初期会听到“咔嚓、咔嚓”的噪声,这主要是由于滚动体在离开载荷区后,滚动体突然加速而与保持架相撞而发出的噪声,这种撞击声不可避免但随着运转一段时间后会消失。
 +
防止保持架噪声措施如下:
 +
a.为使保持架公转运动稳定,应尽量采用套圈引导方式并注意给予引导面的充分润滑,对高速工况下的圆锥滚子轴承结构给予改进,将滚子引导的L型保持架改为套圈挡边引导的Z型保持架。
 +
b.轴承高速旋转时,兜孔间隙大的轴承其保持架振动振幅远大于兜孔间隙小的保持架振动振幅,所以兜孔间隙取值尤为重要。
 +
c.要注意尽量减小径向游隙。
 +
d.尽量提高保持价制造精度,改善保持架表面质量,有利于减小滚动体与保持架发生碰撞或摩擦产生的噪声。
 +
e.积极采用先进的清洗技术,对零配件和合套后的产品进行有效彻底的清洗,提高轴承的洁净度。
 +
5.滚动体通过振动
 +
当轴承在径向载荷作用下运转,其内部只有若干个滚动体承受载荷,由于与套圈的弹性接触构成的“弹簧”支承使滚动体在通过径向载荷作用线产生了周期性振动,而转轴中心因此会上下垂直移动或做水平方向移动,同时引发噪声。这类振动称之为滚动体通过振动,尤其是在低速运转时表现更为明显。
 +
而其振幅则与轴承类型、径向载荷、径向游隙及滚动体数目有关。通常该振幅较小,若振幅大时才形成危害,为此常采用减小径向游隙或施加适当的预载荷来降低。

Revision as of 10:16, 7 August 2007

维基百科收购网络爬虫公司挑战谷歌

北京时间7月29日消息,据国外媒体报道,维基百科创始人吉米·威尔斯(Jimmy Wales)本周五公布了其社区搜索引擎的最新进展。威尔斯此前宣布,将通过自己新创建的商业公司Wikia,打造一个全新的搜索引擎,向市场垄断者谷歌发起挑战。

   威尔斯周五在一次软件开发者会议上表示,Wikia已经收购了一家名为“Grub”的公司,向推出搜索引擎的目标迈出了重要一步。Grub是一家“网络爬虫”(Web crawler)公司未来的Wikia搜索引擎可以通过该公司的技术遍历整个互联网,为相关网站建立索引。威尔斯表示:“如果能为用户提供更好的搜索结果,我们就一定可以打破网络搜索市场的现有格局。我的看法也许不对,但正确的可能性更大。”

Wikia创建于2004年,目前共有30多名员工,主要通过广告获得营收和利润。与维基百科类似,Wikia也采用了“任何人都可编辑”的运作模式,其网页由2000个不同社区来维护。威尔斯今年3月表示,Wikia将推出一款[1]搜索引擎,力争在全球网络搜索市场占据5%的份额。威尔斯还是非盈利项目维基百科(Wikipedia)的创始人,但维基百科和Wikia并没有正式的联系。

  威尔斯在接受国外媒体采访时表示,新搜索引擎的公开版本将于2007年底推出,它将把计算机算法和人力辅助编辑有机地结合在一起,从而为用户提供相关度更高的搜索结果。他说:“如果你使用谷歌搜索引擎,的确可以获得很多有用的搜索结果,但同时也会得到大量垃圾信息。由此可以看出,单纯依靠数学公式无法产生始终相关的搜索结果,人类的智慧将成为搜索的重要组成部分。”

  威尔斯透露,新搜索引擎将通过另一个开放源代码项目“Lucerne”生成搜索结果。他表示将对Lucerne进行增强,但并未公布更多细节。Wikia从LookSmart手中收购了Grub,该公司计划开放Grub,允许他人继续开发,或者将其整合到其它网站中。到目前为止,有关Wikia和LookSmart之间的交易条款尚未披露。

  迄今为止,Wikia已经获得了1400万美元的外部投资。在最新一轮融资中,Wikia获得了来自亚马逊的1000万美元投资。

考察阀门的几项主要技术性能

强度性能 阀门的强度性能是指阀门承受介质压力的能力。阀门是承受内压的机械产品,因而必须具有足够的强度和刚度蝶阀,以保证长期使用而不发生破裂或产生变形平衡阀。 密封性能 阀门的密封性能是指闸阀阀门各密封部位阻止介质泄漏的过滤器能力,它是阀门最重要的技术性能指标截止阀。阀门的电磁阀密封部位有三处:启闭件与阀座两密封面间的接触处球阀;填料与阀杆和填料函的配和处;阀体阻火器与阀盖的连接处。其中止回阀前一处的泄漏叫做内漏,液位仪表也就是通常所说的关不严,它将影响阀门截断介质的能力。对于截断阀类来说,内漏是不允许的。后两处的调节阀泄漏叫做外漏,即介质从阀内泄漏到阀外。外漏会造成物料损失,污染环境,严重时还会造成事故。对于易燃易爆、有毒或有放射的介质,视镜外漏更是不能允许的,因而阀门必须具有可靠的密封性能。 流动介质 介质流过阀门后会产生压力损失(既阀门前后的压力差),也就是阀门对介质的流动有一定的呼吸阀阻力,介质为克服阀门的阻力就要消耗一定的能量。从节约能源上考虑,设计食品疏水阀和制造阀门时,要尽可能降低阀门对流动介质的阻力。 启闭力和启闭力矩 启闭力和启闭力矩是指阀门开启或关闭所必须施加的作用力或力矩。关闭阀门时,需要使启闭件与发座两密封面间形成一定的密封比压,同时还要克服阀杆与填料之间、阀杆与螺母的螺纹之间、阀杆端部支承处及其他磨擦部位减压阀的摩擦力,因而必须施加一定的关闭力和关闭力矩,阀门在启闭过程中,所需要的启闭力和启闭力矩是变化的,其最大值是在关闭的最终瞬时或开启的最初瞬时。设计和制造阀门时应力求降低其关闭力和关闭力矩。 启闭速度 启闭速度是用阀门完成一次开启或关闭动作所需的时间来表示。一般对阀门的启闭速度无严格要求,但有些工况对启闭速度有特殊要求,如有的要求迅速开启或关闭,以防发生事故,有的要求缓慢关闭,以防产生水击等,这在选用阀门类型时应加以考虑。 动作灵敏度和可靠性 这是指阀门对于介质参数变化,做出相应反应的敏感程度。对于节流阀、减压阀、调节阀等用来调节介质参数的阀门以及安全阀、疏水阀等具有特定功能的阀门来说,其功能灵敏度与可靠性是十分重要的技术性能指标。 使用寿命 它表示阀门的耐用程度,不锈钢管件是阀门的重要性能指标,并具有很大的经济意义。通常以能保证密封要求的启闭次数来表示,也可以用使用时间来表示。

轴承结构对振动与噪声的影响

1.滚道声 滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低进口轴承,即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。 滚道声产生源在于受到载荷后的套圈固有振动所致TIMKEN轴承。由于套圈和滚动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使KOYO轴承是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承NSK轴承及精确使用轴承使之降噪减振。 2.落体滚动声 该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区INA轴承的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:a.脂润滑时易产生,油润滑时不易产生FAG轴承。当用劣质润滑脂时更易产生。b.冬季常常发生。c.对于只作用径向载荷且径向游隙较大时也易产生。d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。e.可能是连续声亦可能是断续声。f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。通过采用预SKF轴承载荷方法可有效降低该噪声,减少装机后轴承工作径向游隙,选用良好润滑剂亦能有所改善,有些国外企业采用轻型滚动体,如陶瓷滚子或空心滚子等技术措施来防止这种噪声的产生。 3.尖鸣声 它是金属间滑动摩擦产生相当剧烈的尖叫声,尽管此时轴承温升不高,对轴承寿命和润滑脂寿命也无多大影响,也不影响旋转,但不悦耳声令人不安,尤其是承受径向载荷的大型短圆柱滚子轴承常有此噪声,其特点为:a.轴承径向游隙大时易产生。b.通常出现在脂润滑中,油润滑则较罕见。c.随着轴承尺寸增大而减小,且常在某转速范围内出现。d.冬季时常出现。e.它的出现是无规则的,和不可预知的,并且与填脂量及性能、安装运转条件有关。这种噪声可采用减少轴承径向游隙和采用浅度外圈滚道结构来防止。 4.保持架声 在轴承旋转过程中保持架的自由振动以及它与滚动体或套圈相撞击就会发出此噪声。它在各类轴承中都可能出现,但其声压级不太高而且是低频率的。其特点是:a.冲压保持架及塑料保持架均可产生。b.不论是稀油还是脂润滑均会出现。c.当外圈承受弯矩时最易发生。d.径向游隙大时容易出现。 由于保持架兜孔间隙及保持架与套圈间隙在轴承成品中不可避免的要存在,因此彻底消除保持架声十分困难,但可通过减少装配误差,优选合理的间隙和保持架窜动量来改善。 另一种保持架特殊声是由于保持架与其他轴承零件引导面间的摩擦引发保持架的自激振动而发生的喧嚣声。深沟球轴承的冲压保持架较薄,在径向和轴向平面内的弯曲刚度较低,整体稳定性差,轴承高速旋转时就会因弯曲变形而产生自激振动,引起“蜂鸣声”。 当轴承在径向载荷作用下且油脂性能差的情况下,运转初期会听到“咔嚓、咔嚓”的噪声,这主要是由于滚动体在离开载荷区后,滚动体突然加速而与保持架相撞而发出的噪声,这种撞击声不可避免但随着运转一段时间后会消失。 防止保持架噪声措施如下: a.为使保持架公转运动稳定,应尽量采用套圈引导方式并注意给予引导面的充分润滑,对高速工况下的圆锥滚子轴承结构给予改进,将滚子引导的L型保持架改为套圈挡边引导的Z型保持架。 b.轴承高速旋转时,兜孔间隙大的轴承其保持架振动振幅远大于兜孔间隙小的保持架振动振幅,所以兜孔间隙取值尤为重要。 c.要注意尽量减小径向游隙。 d.尽量提高保持价制造精度,改善保持架表面质量,有利于减小滚动体与保持架发生碰撞或摩擦产生的噪声。 e.积极采用先进的清洗技术,对零配件和合套后的产品进行有效彻底的清洗,提高轴承的洁净度。 5.滚动体通过振动 当轴承在径向载荷作用下运转,其内部只有若干个滚动体承受载荷,由于与套圈的弹性接触构成的“弹簧”支承使滚动体在通过径向载荷作用线产生了周期性振动,而转轴中心因此会上下垂直移动或做水平方向移动,同时引发噪声。这类振动称之为滚动体通过振动,尤其是在低速运转时表现更为明显。 而其振幅则与轴承类型、径向载荷、径向游隙及滚动体数目有关。通常该振幅较小,若振幅大时才形成危害,为此常采用减小径向游隙或施加适当的预载荷来降低。

Personal tools

维基百科收购网络爬虫公司挑战谷歌

北京时间7月29日消息,据国外媒体报道,维基百科创始人吉米·威尔斯(Jimmy Wales)本周五公布了其社区搜索引擎的最新进展。威尔斯此前宣布,将通过自己新创建的商业公司Wikia,打造一个全新的搜索引擎,向市场垄断者谷歌发起挑战。

   威尔斯周五在一次软件开发者会议上表示,Wikia已经收购了一家名为“Grub”的公司,向推出搜索引擎的目标迈出了重要一步。Grub是一家“网络爬虫”(Web crawler)公司未来的Wikia搜索引擎可以通过该公司的技术遍历整个互联网,为相关网站建立索引。威尔斯表示:“如果能为用户提供更好的搜索结果,我们就一定可以打破网络搜索市场的现有格局。我的看法也许不对,但正确的可能性更大。”

Wikia创建于2004年,目前共有30多名员工,主要通过广告获得营收和利润。与维基百科类似,Wikia也采用了“任何人都可编辑”的运作模式,其网页由2000个不同社区来维护。威尔斯今年3月表示,Wikia将推出一款[1]搜索引擎,力争在全球网络搜索市场占据5%的份额。威尔斯还是非盈利项目维基百科(Wikipedia)的创始人,但维基百科和Wikia并没有正式的联系。

  威尔斯在接受国外媒体采访时表示,新搜索引擎的公开版本将于2007年底推出,它将把计算机算法和人力辅助编辑有机地结合在一起,从而为用户提供相关度更高的搜索结果。他说:“如果你使用谷歌搜索引擎,的确可以获得很多有用的搜索结果,但同时也会得到大量垃圾信息。由此可以看出,单纯依靠数学公式无法产生始终相关的搜索结果,人类的智慧将成为搜索的重要组成部分。”

  威尔斯透露,新搜索引擎将通过另一个开放源代码项目“Lucerne”生成搜索结果。他表示将对Lucerne进行增强,但并未公布更多细节。Wikia从LookSmart手中收购了Grub,该公司计划开放Grub,允许他人继续开发,或者将其整合到其它网站中。到目前为止,有关Wikia和LookSmart之间的交易条款尚未披露。

  迄今为止,Wikia已经获得了1400万美元的外部投资。在最新一轮融资中,Wikia获得了来自亚马逊的1000万美元投资。

考察阀门的几项主要技术性能

强度性能 阀门的强度性能是指阀门承受介质压力的能力。阀门是承受内压的机械产品,因而必须具有足够的强度和刚度蝶阀,以保证长期使用而不发生破裂或产生变形平衡阀。 密封性能 阀门的密封性能是指闸阀阀门各密封部位阻止介质泄漏的过滤器能力,它是阀门最重要的技术性能指标截止阀。阀门的电磁阀密封部位有三处:启闭件与阀座两密封面间的接触处球阀;填料与阀杆和填料函的配和处;阀体阻火器与阀盖的连接处。其中止回阀前一处的泄漏叫做内漏,液位仪表也就是通常所说的关不严,它将影响阀门截断介质的能力。对于截断阀类来说,内漏是不允许的。后两处的调节阀泄漏叫做外漏,即介质从阀内泄漏到阀外。外漏会造成物料损失,污染环境,严重时还会造成事故。对于易燃易爆、有毒或有放射的介质,视镜外漏更是不能允许的,因而阀门必须具有可靠的密封性能。 流动介质 介质流过阀门后会产生压力损失(既阀门前后的压力差),也就是阀门对介质的流动有一定的呼吸阀阻力,介质为克服阀门的阻力就要消耗一定的能量。从节约能源上考虑,设计食品疏水阀和制造阀门时,要尽可能降低阀门对流动介质的阻力。 启闭力和启闭力矩 启闭力和启闭力矩是指阀门开启或关闭所必须施加的作用力或力矩。关闭阀门时,需要使启闭件与发座两密封面间形成一定的密封比压,同时还要克服阀杆与填料之间、阀杆与螺母的螺纹之间、阀杆端部支承处及其他磨擦部位减压阀的摩擦力,因而必须施加一定的关闭力和关闭力矩,阀门在启闭过程中,所需要的启闭力和启闭力矩是变化的,其最大值是在关闭的最终瞬时或开启的最初瞬时。设计和制造阀门时应力求降低其关闭力和关闭力矩。 启闭速度 启闭速度是用阀门完成一次开启或关闭动作所需的时间来表示。一般对阀门的启闭速度无严格要求,但有些工况对启闭速度有特殊要求,如有的要求迅速开启或关闭,以防发生事故,有的要求缓慢关闭,以防产生水击等,这在选用阀门类型时应加以考虑。 动作灵敏度和可靠性 这是指阀门对于介质参数变化,做出相应反应的敏感程度。对于节流阀、减压阀、调节阀等用来调节介质参数的阀门以及安全阀、疏水阀等具有特定功能的阀门来说,其功能灵敏度与可靠性是十分重要的技术性能指标。 使用寿命 它表示阀门的耐用程度,不锈钢管件是阀门的重要性能指标,并具有很大的经济意义。通常以能保证密封要求的启闭次数来表示,也可以用使用时间来表示。

轴承结构对振动与噪声的影响

1.滚道声 滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低进口轴承,即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。 滚道声产生源在于受到载荷后的套圈固有振动所致TIMKEN轴承。由于套圈和滚动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。众所周知,即使KOYO轴承是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承NSK轴承及精确使用轴承使之降噪减振。 2.落体滚动声 该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区INA轴承的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:a.脂润滑时易产生,油润滑时不易产生FAG轴承。当用劣质润滑脂时更易产生。b.冬季常常发生。c.对于只作用径向载荷且径向游隙较大时也易产生。d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。e.可能是连续声亦可能是断续声。f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。通过采用预SKF轴承载荷方法可有效降低该噪声,减少装机后轴承工作径向游隙,选用良好润滑剂亦能有所改善,有些国外企业采用轻型滚动体,如陶瓷滚子或空心滚子等技术措施来防止这种噪声的产生。 3.尖鸣声 它是金属间滑动摩擦产生相当剧烈的尖叫声,尽管此时轴承温升不高,对轴承寿命和润滑脂寿命也无多大影响,也不影响旋转,但不悦耳声令人不安,尤其是承受径向载荷的大型短圆柱滚子轴承常有此噪声,其特点为:a.轴承径向游隙大时易产生。b.通常出现在脂润滑中,油润滑则较罕见。c.随着轴承尺寸增大而减小,且常在某转速范围内出现。d.冬季时常出现。e.它的出现是无规则的,和不可预知的,并且与填脂量及性能、安装运转条件有关。这种噪声可采用减少轴承径向游隙和采用浅度外圈滚道结构来防止。 4.保持架声 在轴承旋转过程中保持架的自由振动以及它与滚动体或套圈相撞击就会发出此噪声。它在各类轴承中都可能出现,但其声压级不太高而且是低频率的。其特点是:a.冲压保持架及塑料保持架均可产生。b.不论是稀油还是脂润滑均会出现。c.当外圈承受弯矩时最易发生。d.径向游隙大时容易出现。 由于保持架兜孔间隙及保持架与套圈间隙在轴承成品中不可避免的要存在,因此彻底消除保持架声十分困难,但可通过减少装配误差,优选合理的间隙和保持架窜动量来改善。 另一种保持架特殊声是由于保持架与其他轴承零件引导面间的摩擦引发保持架的自激振动而发生的喧嚣声。深沟球轴承的冲压保持架较薄,在径向和轴向平面内的弯曲刚度较低,整体稳定性差,轴承高速旋转时就会因弯曲变形而产生自激振动,引起“蜂鸣声”。 当轴承在径向载荷作用下且油脂性能差的情况下,运转初期会听到“咔嚓、咔嚓”的噪声,这主要是由于滚动体在离开载荷区后,滚动体突然加速而与保持架相撞而发出的噪声,这种撞击声不可避免但随着运转一段时间后会消失。 防止保持架噪声措施如下: a.为使保持架公转运动稳定,应尽量采用套圈引导方式并注意给予引导面的充分润滑,对高速工况下的圆锥滚子轴承结构给予改进,将滚子引导的L型保持架改为套圈挡边引导的Z型保持架。 b.轴承高速旋转时,兜孔间隙大的轴承其保持架振动振幅远大于兜孔间隙小的保持架振动振幅,所以兜孔间隙取值尤为重要。 c.要注意尽量减小径向游隙。 d.尽量提高保持价制造精度,改善保持架表面质量,有利于减小滚动体与保持架发生碰撞或摩擦产生的噪声。 e.积极采用先进的清洗技术,对零配件和合套后的产品进行有效彻底的清洗,提高轴承的洁净度。 5.滚动体通过振动 当轴承在径向载荷作用下运转,其内部只有若干个滚动体承受载荷,由于与套圈的弹性接触构成的“弹簧”支承使滚动体在通过径向载荷作用线产生了周期性振动,而转轴中心因此会上下垂直移动或做水平方向移动,同时引发噪声。这类振动称之为滚动体通过振动,尤其是在低速运转时表现更为明显。 而其振幅则与轴承类型、径向载荷、径向游隙及滚动体数目有关。通常该振幅较小,若振幅大时才形成危害,为此常采用减小径向游隙或施加适当的预载荷来降低。