View source for Neo FreeRunner Hardware

From Openmoko

Jump to: navigation, search

You do not have permission to edit this page, for the following reasons:

  • The action you have requested is limited to users in the group: Administrators.
  • You must confirm your email address before editing pages. Please set and validate your email address through your user preferences.

You can view and copy the source of this page:

Return to Neo FreeRunner Hardware.

Personal tools

OpenMoko is a software distribution stack that sits on top of a hardware platform. The Neo FreeRunner phone is the second hardware platform to take advantage of OpenMoko. You can find specifics of the hardware by reviewing this introduction page and the pages in the category as shown at the bottom of this page.

You could find high level definition in Neo_FreeRunner_GTA02_Hardware_Specification

NOTE: This page is about hardware that is currently in design/prototype phase, changes are frequent

display (top) side NOTE: GTA02 A5 Component photo
component (back) side NOTE: old GTA01 photo

Physical Dimensions

  • 120.7 x 62 x 18.5 mm (4.75 x 2.44 x 0.728 inch)
  • 110 +/- 5 g (4 ounces) without battery

Main components


The main Processor (CPU) of the Neo1973 GTA02 is a Samsung S3C2442B B54 (running at 400 MHz)

Power Management

A NXP PCF50633 04 N3 is used for power management.

NAND Flash

256MB integrated Samsung NAND flash inside the 2442 multi-chip package, attached to the S3C2442 NAND controller

  • Product Homepage: S3C2442
  • Data Sheet: S3C2442 B54 comes with 256 MB NAND MCP package
  • Connected to: S3C2442 NAND controller

NOR Flash

16MBit ST M58WR016KB706E NOR flash for 'unbrickable emergency boot' feature.


128MB SDRAM (64MB inside 2442 MCP, 1x Samsung K4M51323PC) attached to S3C2442 SDRAM controller


The GSM (including GPRS) modem is Texas Instruments Calypso based.

CALYPSO ASIC digital baseband

Unfortunately we cannot provide many details on the GSM chipset due to very tight NDAs. However, this is not neccessarily required, since it interfaces using a standard UART serial line with the S3C2442. On that interface, GSM 07.05, GSM 07.10 and other standardized protocols are used.

  • Calypso D751992AZHH
  • The firmware within GTA02 should be moko6 or later (internal code name)

TI TWL3025BZGMR analog baseband

TI TRF6151 (GSM/PCS) RF Transceiver

GPRS Class12/CS4


U-blox ANTARIS 4 chip

  • Connected to: S3C2442 UART2, /dev/ttySAC1 in userspace
  • Driver: none needed, talks standard NMEA
  • Datasheet: Atmel ATR0635



Graphics/3D Acceleration

Smedia Glamo 3362.


The GTA02 has one microSD aka Transflash slot. Using the Glamo 3363 MMC/SD controller

LCD Module (LCM)

Toppoly (tpo) 2.8" diagonal (1.7" x 2.27" - 43mm x 58mm) 480x640 TD028TTEC1 module, using a Toshiba JBT6K74 TFT LCD Driver Chipset.

Touch Screen

Bluetooth Module

Delta DFBM-CS320 Class2 Module, using CSR BlueCore4

WiFi Module

Accton (WLAN 802.11b/g SiP-M WM3236AQ(Flash Ver:2.0 Atheros AR6001GZ)


USB Host

The USB Host controller is inside the S3C2442

USB Device

The USB Device controller is inside the S3C2442

I2C Devices

The I2C is a simple communication standard intended to move small amounts of data a few inches between chips. Please see Neo I2C Devices for more information & a list of devices & the addresses currently in use & documented for the Neo1973.


See also: Neo1973 Audio Subsystem

Wolfson Codec

There's a WM8753 Wolfson Microelectronics CODEC (This is not a 'smart' codec that can interpret MP3/... it is a simple dumb 'sound card'.

Mono Amplifier

There's a National Semiconductor LM4853 Mono Amplifier at the analog audio output of the WM8753

Analog wired Headset

There's a four-ring 2.5mm stereo jack which provides connectivity to old-fashioned wired headsets.

The headsets used by Motorola smartphones (A780,A1200, ...) and the V-360 have a compatible configuration.

Bluetooth Headset

This one is wired via PCM bus from the CSR Bluetooth chip to the Wolfson codec.


The Neo1973 GTA02 features two buttons:



Using 4 in 1 laser pen

  • Vendor: Quarton XPII
  • GTA02 standard setup comes with QUARTON XPII 4 in 1 laser pen


The Neo FreeRunner (GTA02) Battery is mechanically and electrically compatible with the Neo1973 GTA01 Battery, as well as limited compatibility with a Nokia BL6C battery. According to this post on the mailinglist. Photo of the battery inside the Neo1973.

  • GTA02 using the smart battery based on TI bq27000 chipset
  • Default using SANYO 1200mAh cell.

microSD Card

GTA02 should comes with one of following microSD card

  • Trendsend 512MB microSD card
  • SanDisk 512MB microSD card


AKII Technology Charger

  • Model: A10P1-05MP
  • Input: 100-240v~ /0.3A
  • Output: +5v up to 2.0A
  • Add 47.5k 1% resistor between ID pin and ground for openmoko charger identification



First generation of prototypes that was given to internal OpenMoko software developers. Total 30 pcs fabricated.

  • It is working just fine, but still based on 2440, with external NAND/SDRAM and no NOR flash
  • Using the PCF50633 05 N3 due to 04 N3 not available, re-work power for basic schematics verification
  • Using GTA01 SIM socket
  • Add external debug port
  • Still using Global locate A-GPS


Second generation of prototypes, Total 50 pcs run at Taipei SMT factory MOUNT

  • Ideal is have 256 MB NAND on Samsung package, Due to chip availability Start using S3C2442 B43
  • Using correct PMU PCF50633 04 N3
  • Change new SIM socket
  • Change to u-blox A-GPS
  • Change LCM power from 3.3v to 1.8v
  • USB power switch layout/pin assignment mistake, could not verify USB host supply 5v function
  • GPS function verified ok with good senstivity


Production verification version, 2007/10/11 28 pcs fabricate at FIC SuZhou

  • Still using S3C2442 B43 for hardware verification
  • Using control pilot run to verify S3C2442 B54 chips


Mass production release candicate version 1

2 weeks after v3 gerber out, release the v4 gerber, and 2007/10/20 20 pcs fabricate at FIC SuZhou

  • Change LCM power from 1.8v to 3.3v for display stability issue
  • fabricate another 200 pcs for yield rate/production verification
  • fabricate 50 pcs with S3C2442 B43 (128 MB NAND) for quality comparsion
  • USB host power chip have some output voltage stability issues with Vb/Vcc comes from different power source, need layout change to fix the issue
  • Battery Coulomb design not working on A4


Mass production candicate version 2/Mass production version

  • First batch fabricate 2008/1/14 at FIC SuZhou
  • Coulomb counter issue fixed
  • USB host power switch fixed
  • Need add capacitor for PMU Vbat input for stability issue, this could be done by direct SMT or hand rework
  • First batch of prototypes for GTA02 developers was tracked in Prototypes page

Debug Connector

This is the connector used to connect the Debug Board and possibly other hardware.

Connections are:

  • 39 - GND
  • 38 - STDI
  • 37 - _RESET
  • 36 - STMS
  • 35 - STCK
  • 34 - STDO
  • 33 - GSM_EN
  • 29 - _STRST
  • 19 - X_I2C_SCL (H-TP4703)
  • 18 - X_I2C_SDA (H-TP4704)
  • 17 - SPI_CLK0
  • 16 - SPI_MOSI0
  • 15 - SPI-MISO0
  • 14 - SS0
  • 13 - EINT3 (H-TP4705)
  • 3 - CONSOLE_TXD (H-TP4701)
  • 2 - CONSOLE_RXD (H-TP4702)

Information from [1].

Distinguishing hardware revisions

Inside the Bootloader

Every hardware revision has its own u-boot image type. Thus, the bootloader has the revision hard-coded. The hardware revision is passed on to the kernel via the ATAG mechanism (ATAG_REVISION)

Inside the Kernel

The kernel receives the ATAG_REVISION during bootup, and saves its contents in the "system_rev" global variable.

From Userspace

The kernel exports the system_rev variable in /proc/cpuinfo as "Revision :" line.


  • FCC
    • 850/1800/1900 Band, FCC ID: EUNGTA02
    • 900/1800/1900 Bnad, FCC ID: EUNGTA02E
  • NCC (for Taiwan Import)