
Dual Mode Phone

Tick

Agenda

 Legal Issues
 Dual Mode
 Skype Adapter Layer
 Qtopia Phone Server
 Qapp Arch.
 Event
 Stack Tracing

Legal Issues

 There are NO confidential materials in
this slide.

 All info in this slide can be found in
news or been declared in conferences.

Dual Mode Phone
 Skype

− Skyhost
 GSM

− Qtopia Phone Edition

Skype Adapter Layer

MMI

Skype Adapter

Skype Thread

Apiwrapper

QCop

Skyhost

Socket

MMI

Apiwrapper

Skyhost

Socket

Synchronies V.S. Asynchronies

 MMI has to dial many events and show
animations.

 Apiwrapper is a adapter that
synchronized to Skyhost.

 Queries and modifications shall not
be synchronized.

 Actions shall be synchronized to
Skyhost.

− In this place we create a fake
synchronize.

Qtopia Phone Server

MMI

PhoneLine PhoneCall SMSResquest PhoneBook STK

PhoneServer

AT Handler VOIP Handler

DevicesModem SIP Server

Name

 PhoneServer can handle many lines at
the same time.

 In PhoneServer each line has it’s
name.

− The name of each line follows the name
of private

 PhoneServer selects specified line
with name.

 PhoneLine creates private object by
name.

Query

 PhoneLine provides many QueryType that
allow Upper MMI to query.

 The result of query will return from the
SIGNAL
queryResult(PhoneLine::QueryType type, const
QString& value)

PhoneLine

PhoneLinePrivate

query queryResult

PhoneLineQCop

PhoneLine
PhoneLineQCop

QCopChannel
"QPE/Phone"

PhoneServerQCop

PhoneMessage

PhoneLine
PhoneLineAt

Modem

Hooked Slots

Listen

QApp Sequence Diagram
QCoreApplication::exec

QEventDispatcher
::activateSocketNotifier

QEventLoop::exec

QEventLoop::ProcessEvent

QEventDispatcherUnix
::ProcessEvent

QEventDispatcherUnix
::doSelect

sele ct

::read

While(!d->exit)

do

While(…)

SendEvent

Moc, Signal , Slot, connect and emit

 Moc a program that implements signals,
Me taT ab leMe taT ab le, and functions Q_OBJECT
defined.

 Signals
− Activate a signal by name

 Slots
− Create a table of each slot with a unique id

 Connect
− Connect a signal and a slot to connectList

Timer

 Observer design pattern
 Each thread has itself Timer
 startTimer registers a Timer

QCop

 QCop was implemented by QCopChannel
in which made by UNIX Socket.

 It do read and write to a socket with
the scheme of QEvent.

 QCopEnvelop was sent to the socket
when the QCopEnvelope instance is
deconstructed.

 Only QApplication use it (Factory).

Stack Tracing

 extern "C" void __cyg_profile_func_enter(void *func,void *caller)
__attribute__((__no_instrument_function__));

 extern "C" void __cyg_profile_func_exit(void *func,void *caller)
__attribute__((__no_instrument_function__));

 CFLAGS -finstrument-functions
 push function entries into stack while
entering a function.

 pop the function entries while leaving a
function.

 show the stack log when crashed.

Q & A
~ Thanks ~

Select
 #include <sys/select.h>
 int select(int n, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds,struct timeval
*timeout);

 FD_CLR(int fd, fd_set *set);
 FD_ISSET(int fd, fd_set *set);
 Four macros are provided to manipulate the
sets. FD_ZERO will clear a set. FD_SET
and FD_CLR add or remove a given
descriptor from a set. FD_ISSET tests to
see if a descriptor is part of the set;
this is useful after select returns.

Select Example
 #include <stdio.h>
 #include <sys/time.h>
 #include <sys/types.h>
 #include <unistd.h>
 int main(void) {
 fd_set rfds;
 struct timeval tv;
 int retval;

 /* Watch stdin (fd 0) to see when it has input. */
 FD_ZERO(&rfds);
 FD_SET(0, &rfds);
 /* Wait up to five seconds. */
 tv.tv_sec = 5;
 tv.tv_usec = 0;

 retval = select(1, &rfds, NULL, NULL, &tv);
 /* Don’t rely on the value of tv now! */
 if (retval == -1)
 perror("select()");
 else if (retval)
 printf("Data is available now.\n");
 /* FD_ISSET(0, &rfds) will be true. */
 else
 printf("No data within five seconds.\n");

 return 0;
 }

Observer Pattern

Design Pattern Discussions

 Observer  Signal Slot
 Chain of Responsibility  QCop,
sendEvent

 Factory & Bridge  Decide which Dispatcher

 Template Method  Private
 Strategy qws unix x11
glib

 Command  meta obj
 Singaleton  qApp AppMap

